Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124155, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38552542

RESUMEN

Raman spectroscopy is a powerful technique for protein detection, but the calculation of Raman spectrum is a longstanding challenging problem due to the large sizes and complex structures of protein molecules. Dividing proteins into fragments can greatly accelerate the calculation, but this usually introduces large errors originating from ignored interactions between fragments into obtained spectra. In this paper, we proposed a new adaptive segmentation method based on the strength of interactions and molecular shapes and structures, i.e., electron density clustering, to divide proteins. It can reduce errors of obtained Raman spectra by about 20% compared to the uniform segmentation method without a significant increase in computational cost. This method can facilitate the validation and analysis of detected Raman spectra of proteins and promote the application of Raman spectroscopy in biological detection.


Asunto(s)
Electrones , Espectrometría Raman , Espectrometría Raman/métodos , Análisis por Conglomerados
2.
Artículo en Inglés | MEDLINE | ID: mdl-37878252

RESUMEN

The coronavirus disease 2019 (COVID-19) epidemic has given a warning that it is important to explore the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical specimens or environmental samples for public health strategies and future variants. The surface-enhanced Raman spectroscopy (SERS) technique was demonstrated to achieve this goal. However, the consistency of signals originating from the poor compatibility of virions with SERS hotspots remains a key scientific challenge for the practical applications of SERS. Herein, we develop a SERS platform for the ultrasensitive and rapid detection of SARS-CoV-2 antigen within 20 min by the combination of a highly consistent SERS substrate and a supervised deep learning algorithm. A V-shaped resonant cavity array (VRC) substrate was fabricated to trap SARS-CoV-2 virions in the periodic V cavity array and stimulate the integral SERS signal of the virus via a resonance coupling effect. Benefiting from the unique architecture of the VRC substrate, we were able to directly detect the SARS-CoV-2 virus with high sensitivity and high consistency. These excellent performances enabled us to identify five different kinds of SARS-CoV-2 variants and detect SARS-CoV-2 from clinical and environmental samples with high accuracies.

3.
J Appl Spectrosc ; 89(6): 1203-1211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36718373

RESUMEN

The outbreak of COVID-19 has spread worldwide, causing great damage to the global economy. Raman spectroscopy is expected to become a rapid and accurate method for the detection of coronavirus. A classification method of coronavirus spike proteins by Raman spectroscopy based on deep learning was implemented. A Raman spectra dataset of the spike proteins of five coronaviruses (including MERS-CoV, SARS-CoV, SARS-CoV-2, HCoVHKU1, and HCoV-OC43) was generated to establish the neural network model for classification. Even for rapidly acquired spectra with a low signal-to-noise ratio, the average accuracy exceeded 97%. An interpretive analysis of the classification results of the neural network was performed, which indicated that the differences in spectral characteristics captured by the neural network were consistent with the experimental analysis. The interpretative analysis method provided a valuable reference for identifying complex Raman spectra using deep-learning techniques. Our approach exhibited the potential to be applied in clinical practice to identify COVID-19 and other coronaviruses, and it can also be applied to other identification problems such as the identification of viruses or chemical agents, as well as in industrial areas such as oil and gas exploration.

4.
Anal Chem ; 95(5): 3019-3027, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36706440

RESUMEN

Breast cancer is the most commonly diagnosed cancer type worldwide. Overexpression of human epidermal growth factor receptor 2 (HER2) is an important subtype of breast cancer and results in an increased risk of recurrence and metastasis in patients. At present, immunohistochemistry (IHC) is used to detect the expression of HER2 in breast cancer tissues as the golden standard. However, IHC has some shortcomings, such as large subjective impact, long time consumption, expensive reagents, etc. In this paper, a combined morphological and spectroscopic diagnostic method based on label-free surface-enhanced Raman scattering (SERS) for HER2 expression in breast cancer is proposed. It can not only quantitively detect HER2 expression in breast cancer tissues by spectroscopic measurements but also give morphological images reflecting the distribution of HER2 in tissues. The results show that the consistency between this method and IHC is 95% and achieves the annotation of tumor regions on tissue sections. This method is time-consuming, quantifiable, intuitive, scalable, and easy to understand. Combined with deep learning approaches, it is expected to promote the development of clinical detection and diagnosis technology for breast cancer and other cancers.


Asunto(s)
Neoplasias de la Mama , Espectrometría Raman , Humanos , Femenino , Neoplasias de la Mama/patología , Receptor ErbB-2/metabolismo , Inmunohistoquímica , Biomarcadores de Tumor
5.
Chem Phys Lett ; 800: 139663, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35529782

RESUMEN

In order to control COVID-19, rapid and accurate detection of the pathogenic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an urgent task. The target spike proteins of SARS-CoV-2 have been detected experimentally via Raman spectroscopy. However, there lacks high-accuracy theoretical Raman spectra of the spike proteins to as a standard reference for the clinic diagnostic purpose. In this paper, we propose a large fragment method to construct the high-precision Raman spectra for the spike proteins. The large fragment method not only reduces the calculation error but also improves the accuracy of the protein Raman spectra by completely calculating the interactions within the large fragment. The Pearson correlation coefficient of theoretical Raman spectra is greater than 0.929 or more. Compared with the experimental spectra, the characteristic patterns are easily visible. This work provides a detection standard for the spike proteins which shall bring a step closer to the fast recognition of SARS-CoV-2 via Raman spectroscopy method.

6.
Anal Chem ; 93(26): 9174-9182, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34155883

RESUMEN

A rapid, on-site, and accurate SARS-CoV-2 detection method is crucial for the prevention and control of the COVID-19 epidemic. However, such an ideal screening technology has not yet been developed for the diagnosis of SARS-CoV-2. Here, we have developed a deep learning-based surface-enhanced Raman spectroscopy technique for the sensitive, rapid, and on-site detection of the SARS-CoV-2 antigen in the throat swabs or sputum from 30 confirmed COVID-19 patients. A Raman database based on the spike protein of SARS-CoV-2 was established from experiments and theoretical calculations. The corresponding biochemical foundation for this method is also discussed. The deep learning model could predict the SARS-CoV-2 antigen with an identification accuracy of 87.7%. These results suggested that this method has great potential for the diagnosis, monitoring, and control of SARS-CoV-2 worldwide.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , SARS-CoV-2 , Sensibilidad y Especificidad , Espectrometría Raman , Esputo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...